

Reference: REP/1704/4084 Status : Issue :1.0 Date : 18/03/2017

Wideband Compact Cryogenic receiver QRFH SN02 FAT

REPORT

Document Reference	:	REP/1704/4084
Status	:	Issue :1.0
Date	:	18/03/2017
Contract	:	PRP/685/3606v1.0 11.Apr.2016
		+ Letter UTAS 13.Apr.2016
Prepared by	:	Thomas BONHOURE
Reviewed/Approved by	:	Steve Rawson
Approval Signature	:	

Callisto 12 Av.de Borde Blanche Villefranche de Lauragais F-31290 Tel. +33 561 800 807 www.callisto-space.com

Copyright ©2017 Callisto France

The Copyright of this document is the property of Callisto France s.a.r.l. It is supplied in confidence and shall not be reproduced, copied or communicated to any third party without written permission from Callisto. All rights reserved.

Document Amendment Record

Issue No.	Date	File Name	Details
0.1	08.03.17	4084	Draft

Document Distribution Record

Name	Organisation	Media	Number of Copies
Callisto Team	Callisto	PDF	1
Simon Ellingsen	UTAS	PDF	1

TABLE OF CONTENTS

Document Amendment Record	2
Document Distribution Record	2
TABLE OF CONTENTS	3
LIST OF FIGURES	4
LIST OF TABLES	4
1. INTRODUCTION	5
1.1 PURPOSE & SUMMARY	.5
1.2 APPLICABLE & REFERENCE DOCUMENTS. 1.2.1 Applicable Documents.	.5 .5
2. TEST RESULTS SUMMARY	6
3. DETAILED TESTS RESULTS	9
3.1 THERMAL TESTS	.9
3.2 RF TESTS	3
3.2.1 Noise temperature measurement	20
3.2.2 Noise Calibration	26
3.2.3 Phase Calibration	29
LIST OF ABBREVIATIONS	34

Reference: REP/1704/4084 Status : Issue :1.0 Date : 18/03/2017

LIST OF FIGURES

FIGURE 3-1 : COOLDOWN	11
FIGURE 3-2: STABILIZATION – BASE TEMPERATURE	11
FIGURE 3-3: WARM-UP	12
FIGURE 3-4: GAIN VIA TEST INPUT FOR TLNA=76.6K	15
FIGURE 3-5: OUTPUT RETURN LOSS	15
FIGURE 3-6: GAIN VIA TEST INPUT STABILITY OVER 60MIN (1 SAMPLE PER MIN) @2GHz	16
FIGURE 3-7: GAIN VIA TEST INPUT STABILITY OVER 60MIN (1 SAMPLE PER MIN) @8GHz	16
FIGURE 3-8: GAIN VIA TEST INPUT STABILITY OVER 60MIN (1 SAMPLE PER MIN) @14GHZ	17
FIGURE 3-9: GAIN VIA TEST INPUT STABILITY OVER 60SEC (1 SAMPLE PER SEC) @2GHZ	17
FIGURE 3-10: GAIN VIA TEST INPUT STABILITY OVER 60SEC (1 SAMPLE PER SEC) @8GHZ	18
FIGURE 3-11: GAIN VIA TEST INPUT STABILITY OVER 60SEC (1 SAMPLE PER SEC) @14GHZ	18
FIGURE 3-12: GAIN EXTRACTED FROM NT MEASUREMENT.	19
FIGURE 3-13: RFI SURVEY IN THE CALLISTO LABORATORY, OUTPUT OF AN AMPLIFIER, AT LOW FREE	QUENCY THE
RFI ARE MIXED BY THE AMPLIFIER	20
FIGURE 3-14: RFI SURVEY OF THE NT MEASUREMENT LOCATION.	21
FIGURE 3-15: NT MEASUREMENT TEST SET-UP.	22
FIGURE 3-16: NT MEASUREMENT RAW DATA FOR TLNA=77K	23
FIGURE 3-17: NT MEASUREMENT CLEANED DATA FOR TLNA=77K	24
FIGURE 3-18: NT MEASUREMENT CLEANED DATA TREND FOR TLNA=77K	25
FIGURE 3-19: NOISE CALIBRATION CIRCUIT	26
FIGURE 3-20: Y-FACTOR MEASURED WITH THE NOISE DIODE ON (TN=10K) AND OFF @9GHZ PORT	X28
FIGURE 3-21: Y-FACTOR MEASURED WITH THE NOISE DIODE ON (TN=10K) AND OFF @9GHZ PORT	Y28
FIGURE 3-22: NOISE CALIBRATION CIRCUIT	29
FIGURE 3-23: PORT X OUTPUT @2GHz WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 0DE	329
FIGURE 3-24: PORT X OUTPUT @2GHz WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 31.5	5DB. 30
Figure 3-25: Port X output @14GHz when comb generator on and attenuator set to $0c$	•B.30
FIGURE 3-26: PORT X OUTPUT @14GHZ WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 8D)B.31
FIGURE 3-27: PORT Y OUTPUT @2GHz WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 0DE	331
FIGURE 3-28: PORT Y OUTPUT @2GHZ WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 31.5	5DB. 32
FIGURE 3-29: PORT Y OUTPUT @14GHZ WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 0D	•B.32
FIGURE 3-30: PORT Y OUTPUT @14GHZ WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 8D	B.33

LIST OF TABLES

Table 2-1: Test Results Summary	8
Table 3-1: Test Result Sheet n°1 - Thermal Tests	10
TABLE 3-2: TEST RESULT SHEET N°2 – RF TESTS	14
Table 3-3: Noise diode NT measurement results	27

1. INTRODUCTION

1.1 Purpose & Summary

Tests have been conducted on the Wideband Compact Cryogenic Receiver QRFH SN02 in Callisto laboratory and outside for the noise temperature according to the procedures described in test plan 1.2.1.

The tests included RF testing and cryogenic testing.

The tests have been performed from 08.Mar.2017 to 12.Mar.2017. Thermal and RF tests have been performed both indoor and outdoor. The FAT results are successful, within the specification.

The receiver operation and performance are validated.

1.2 Applicable & Reference Documents

This section lists other documents which are referred to in the main body of this document. In cases when the document cited is listed without an issue number, revision number or date, then the reader should refer to the latest available issue.

1.2.1 Applicable Documents

- AD1 Callisto Proposal, Ref. PRP/685/3606 issue 1.0 dated 11th April 2016
- AD2 User Manual, QRFH Compact Wideband Cryogenic Receiver, DOC/1704/3991
- AD3 Test Plan Procedure QRFH Compact Receiver, TST/1704/3990, Issue 1.0
- AD4 Interface Control Document, ICD/1704/3992, issue 1.0

Reference: REP/1704/4084 Status : Issue :1.0

. 10000 . 1.0

Date : 18/03/2017

2. TEST RESULTS SUMMARY

Result "R" column = Passed (**P**), Marginal (**M**), Failed (**F**)

Parameter	Specifications	Results	Verification Method	R	Comments
Frequency Band	2-14~GHz		AT		
Port X		2-14GHz		Р	
Port Y		2-14GHz		Р	
Noise Temperature	<40K		AT		at cryogenic temperature
Port X		92% of the meas <40K		Р	TLNA=77K
Port Y		96% of the meas <40K		Р	TLNA=77K
Gain	>55dB		AT		
Port X		58dBmin		Р	Cain autracted from NT mass
Port Y		56dBmin		Р	Gain extracted noin NT meas
Gain Flatness	10dBpp		AT		
Port X		~5dBpp		Р	Worst case, gain extracted from NT meas.
Port Y		~7dBpp		Р	Approximated value due to RFI perturbation.
Output Return Loss	10dBmin		AT		
Port X		13.6dBmin		Р	14dB typical
Port Y		12.3dBmin		Р	14dB typical
Pout 1dB	+20dBm		CT; D		

Report

Reference: REP/1704/4084

Status : Issue :1.0

Date : 18/03/2017

Port X		+20dBm		Р	
Port Y		+20dBm		Р	
Gain via test input			AT		No specification defined for this parameter
Port X		20.4dB <g<44.1db< td=""><td></td><td></td><td></td></g<44.1db<>			
Port Y		19.3dB <g<43.9 db<="" td=""><td></td><td></td><td></td></g<43.9>			
Cooldown Time to reach NT<40K	<5 hours		AT		
Port X		4Hrs		Р	
Port Y		4Hrs		Р	
Noise calibration	None		AT	Р	The NT measurement performed with the noise diode is comparable with the NT measurement done with the sky method (see Table 3-3)
Phase calibration	None		AT	Р	The minimum picket level at 14GHz available at the output of the receiver is around -52dBm (see Figure 3-26 and Figure 3-29).
Cold Head Base Temperature	80K	75K	AT	Р	
Cooldown Time to base temperature	not specified	1h36	AT		
Warm-up Time (base temp>280K)	not specified	15Hrs	AT		
RF Input	Free space radiation	Ok	D	Р	
RF output connector	SMA	Ok	Ι	Р	
Port X		Ok		Р	
Port Y		Ok		Р	

Report

Reference: REP/1704/4084

Status : Issue :1.0

Date : 18/03/2017

10MHz Phase Calibration Input	SMA	Ok	Ι	Р	
Dimensions (mm)	1=612mm * Phi=311mm		Ι	Р	Excluding supports and connectors
Weight (kg)	<27kg	26.8Kg	AT	Р	Excluding supports and cables
Operating Orientation	Any		D	Р	
Operating Temperature	-10°C to +40°C		D	Р	
Storage Temperature	-40°C to +60°C		D	Р	
Relative Humidity	to 90% non condensing		D	Р	
Ventilation Requirement	Forced air cooling	Ok	Ι	Р	
Max Power Consumption	400W	345W	AT	Р	
Input Voltage	90—264VAC / 47—63Hz	Ok	D	Р	
Distance between receiver and PSU Drawer	<20m	Ok	AT	Р	Split M&C – 5m between receiver and DAQ-PSU enclosure – 20m between DAQ-PSU enclosure and PC enclosure
LMS parameters display		Ok	AT	Р	
LMS functions		Ok	AT	Р	
LMS log files		Ok	AT	Р	
Remote communication		Ok	AT	Р	
Cryocooler MTTF	200,000 hours		D	Р	

Table 2-1: Test Results Summary

Reference: REP/1704/4084

Status : Issue :1.0

Date : 18/03/2017

3. DETAILED TESTS RESULTS

3.1 Thermal Tests

Result "R" column = Passed (P), Marginal (M), Failed (F)

Ref	Parameter / Requirement	Spec	Result	R	Comments
	Date: 09/02/17				
	Cooldown time				
	to RF specification	5 hours	see Table 2-1		5 hours expected to reach RF specification (NT<40K)
	on cold head	295K to <100K	0h25	-	
	(6 ??	295K to Base temperature	1h36	-	
	on LNA	295K to <100K	0h39	-	
	(())	295K to Base temperature	8hrs	-	
	on feed base plate	295K to <150K	5h50	-	
	(())	295K to Base temperature	15hrs	-	
	Base Temperatures	Tset = 75K			
	Cold head	~75K±0.5K	75K	Р	@10hours in cooldown
	LNA	<85K	77K	Р	@10hours in cooldown
	Feed [base]	<130K	134K	Μ	@10hours in cooldown
	Feed [top]	<150K	144K	Р	@10hours in cooldown
	Cooler Input Power		70W		
	Compressor Temperature	<70°C	24°C	Р	

Reference: REP/1704/4084

Status : Issue :1.0

Date : 18/03/2017

Ref	Parameter / Requirement	Spec	Result	R	Comments
	Ambient(Room) Temperature		18°C		
	Warmup time (no heaters)	100K to 295K No spec.	25Hrs		

Table 3-1: Test Result Sheet n°1 - Thermal Tests

Reference: REP/1704/4084 Status : Issue :1.0 Date : 18/03/2017

Figure 3-3: Warm-up

Reference: REP/1704/4084

Status : Issue :1.0

Date : 18/03/2017

3.2 RF Tests

Result "R" column = Passed (**P**), Marginal (**M**), Failed (**F**)

Ref	Parameter / Requirement	Spec		Result		R	Comments
	Cryogenic Temperature						TcryoLNA = 72K
	Frequency Band	2 – 14 GHz		2-14GH	Iz		
	Noise Temperature	Max<40K	Min Meas Meas Mean Meas Min Trend Max	Port X 26.3K 53.9K 34.2K 30K 45K	 Port Y 22.5K 48.1K 29.6K 25K 42K 	P	The measurement has been done with the following physical temperatures of the (Tcoldtip=75K; TLNA=76.4K; Tbase feed=125.3K and Ttopfeed=136.1K). NT measurement is degraded by the RFI observed at low frequency. (See NT graph Figure 3-16) Port X: 92% of the NT measurement is in specification from 3GHz up to 14GHz. Port Y: 96% of the NT measurement is in specification
	Gain	>55dB	trend Port 2 58dBm	K uin	Port Y 56dBmin	P	Gain extracted from NT meas
	Gain Flatness	10dBpp	~5dBp	p	~7dBpp	Р	Worst case gain extracted from NT meas
	Output Return Loss	>10dB	13.6dB 1	nin	in 12.3dB min		14dB typical
	Pout 1dB	+20dBm	+20dBm		Р	By design	
	Gain via test input (Port X)	-	20.4d	20.4dB <gain<44.1db< th=""><th></th><th></th></gain<44.1db<>			
	Gain via test input (Port Y)	-	19.3d	B <gain∙< th=""><th><43.9 dB</th><th></th><th></th></gain∙<>	<43.9 dB		

Reference: REP/1704/4084

Status : Issue :1.0

Date : 18/03/2017

Ref	Parameter / Requirement	Spec	Result	R	Comments
			@2GHz / 60min: 0.05dBpp		T
					I wo measurement session have been performed, one
	Gain via test input stability (Port	_	@14GHz / 60min: 0.03dBpp		with the VNA calibrated between IGHz and 9GHz and
	X)	-	@2GHz / 60sec: 0.03dBpp		the second session with the VNA calibrated from
			@8GHz / 60sec: 0.03dBpp		13.5GHz up to 14.5GHz.
			@14GHz / 60sec: 0.02dBpp		
			@2GHz / 60min: 0.04dBpp		
			@8GHz / 60min: 0.08dBpp		Two measurement session have been performed, one
	Gain via test input stability (Port	_	@14GHz / 60min: 0.02dBpp		with the VNA calibrated between 1GHz and 9GHz and
	Y)	-	@2GHz / 60sec: 0.04dBpp		the second session with the VNA calibrated from
			@8GHz / 60sec: 0.03dBpp		13.5GHz up to 14.5GHz.
			@14GHz / 60sec: 0.02dBpp		

Table 3-2: Test Result Sheet n°2 – RF Tests

Figure 3-6: Gain via test input stability over 60min (1 sample per min) @2GHz

Figure 3-7: Gain via test input stability over 60min (1 sample per min) @8GHz

PROPRIETARY INFORMATION ©Callisto France sarl.

Figure 3-9: Gain via test input stability over 60sec (1 sample per sec) @2GHz

Figure 3-11: Gain via test input stability over 60sec (1 sample per sec) @14GHz

PROPRIETARY INFORMATION ©Callisto France sarl.

The gain of the receiver has been extracted from the noise temperature measurement using the following formula:

$$G = \frac{P_{hot}}{(T_e - T_{hot}) \times B \times k}$$

With:

- G = Gain of the receiver
- Phot = Power measure at the output of the receiver when the hot load is in front of the receiver
- Te = Noise temperature of the receiver
- Thot = Noise temperature of the hot load
- B = Bandwidth (Resolution Band Width set on the spectrum analyser)
- K = Boltzmann constant

Figure 3-12: Gain extracted from NT measurement.

The gain extracted from the NT measurement is noisy but it gives a good trend for the overall gain of the receiver.

	Donort	Referen	ce: REP/1704/4084
Callisto	Report	Status	: Issue :1.0
		Date	: 18/03/2017

3.2.1 Noise temperature measurement

Due to the increase of mobile phone antenna installations nearby Callisto's premises it is becoming more and more difficult to make clean and valuable noise temperature measurements on the QRFH receiver. Indeed, the increase of RFI measured in the Callisto laboratory is problematic for this type of measurement:

Date: 22.NOV.2016 17:08:54

Figure 3-13: RFI survey in the Callisto laboratory, output of an amplifier, at low frequency the RFI are mixed by the amplifier.

The RFI have a direct impact on the NT measurement (noise peak) but the RFI are also mixed by the amplifiers of the receiver and so the overall noise floor increases.

It is difficult for us to find a convenient place without RFI to make the NT measurement but we have tried to move to a place with less RFI in the countryside:

Reference: REP/1704/4084

Status : Issue :1.0

Date : 18/03/2017

Figure 3-14: RFI survey of the NT measurement location.

 Reference: REP/1704/4084

 Status
 : Issue :1.0

 Date
 : 18/03/2017

Figure 3-15: NT measurement test set-up.

Reference: REP/1704/4084

Status : Issue :1.0

Date : 18/03/2017

Figure 3-16: NT Measurement raw data for TLNA=77K

Figure 3-17: NT Measurement cleaned data for TLNA=77K

Reference: REP/1704/4084

Status : Issue :1.0

Date : 18/03/2017

Figure 3-18: NT Measurement cleaned data trend for TLNA=77K

Callisto	Donort	Reference	ce: REP/1704/4084
	Kepon	Status	: Issue :1.0
		Date	: 18/03/2017

3.2.2 Noise Calibration

The purpose of this circuit is to inject two levels of noise in the QRFH receiver in order to do a noise measurement using the Y-factor method. The noise is generated by a noise diode and the level of noise is set using a variable attenuator. This noise signal is injected inside the QRFH feed by a probe antenna.

Figure 3-19: Noise calibration circuit

The two levels of noise have been defined by UTAS Tn1=10K and Tn2=0.5K. The theoretical attenuation (At) required to achieve Tn1 and Tn2 has been calculated according to the ENR of the noise diode at 50°C from the calibration data given by the noise diode manufacturer. The following tables give the theoretical variable attenuator settings to generate Tn1 and Tn2:

1704 QRFH SN02 Attenuator Settings for Noise Calibration Port X (ND AE848)							
Freq (GHz)	ND ENR (dB) @50°C	ND ENR Td ND At1 calculated IB) @50°C @50°C (K) for Tn1=10K (dB) attenuator (dB) Tn2=0.5K (dB)		Theoretical Att2 to set on the attenuator (dB)			
2	32.14	474966.79	46.77	10.0	59.78	23	
3	31.95	454647.81	46.58	21.0	59.59	31.5	
4	31.80	439222.76	46.43	14.0	59.44	27.5	
5	31.64	423346.14	46.27	18.0	59.28	31	
6	31.43	403376.26	46.06	14.5	59.07	27.5	
7	31.15	378208.37	45.78	15.5	58.79	27.5	
8	30.86	353796.98	45.49	13.0	58.50	25.5	
9	30.80	348946.69	45.43	8.0	58.44	20.5	
10	30.86	353796.98	45.49	7.5	58.50	20	
11	30.84	352172.77	45.47	6.0	58.48	19	
12	31.02	367063.54	45.65	4.0	58.66	17.5	
13	31.36	396931.36	45.99	1.5	59.00	14.5	
14	31.52	411816.68	46.15	0.0	59.16	12.5	

1704 QRFH SN02 Attenuator Settings for Noise Calibration Port Y (ND AE848)							
Freq (GHz)	ND ENR (dB) @50°C	ND ENR Td ND At1 calculated Theoretical Att1 dB) @50°C @50°C (K) for Tn1=10K (dB) to set on the attenuator (dB) At2 calculated for Tn2=0.5K (dB)		Theoretical Att2 to set on the attenuator (dB)			
2	32.14	474966.79	46.77	10.0	59.78	23	
3	31.95	454647.81	46.58	21.0	59.59	31.5	
4	31.80	439222.76	46.43	14.0	59.44	27.5	
5	31.64	423346.14	46.27	18.0	59.28	31	
6	31.43	403376.26	46.06	14.5	59.07	27.5	
7	31.15	378208.37	45.78	15.5	58.79	27.5	
8	30.86	353796.98	45.49	13.0	58.50	25.5	
9	30.80	348946.69	45.43	8.0	58.44	20.5	
10	30.86	353796.98	45.49	7.5	58.50	20	
11	30.84	352172.77	45.47	6.0	58.48	19	
12	31.02	367063.54	45.65	4.0	58.66	17.5	
13	31.36	396931.36	45.99	1.5	59.00	14.5	
14	31.52	411816.68	46.15	0.0	59.16	12.5	

	Donort	Referen	ce: REP/1704/4084
Callisto	Keport	Status	: Issue :1.0
		Date	: 18/03/2017

Find below a description of each column of the table above:

- ND ENR @50°C (dB): ENR of the noise diode @50°C from the calibration data given by the noise diode manufacturer.
- Td ND @50°C (K): Noise generated by the noise diode in Kelvin. Derivate from the noise diode ENR @50°C.
- At1 calculated for Tn1=10K (dB): Attenuation At1 calculated in order to inject Tn1=10K in the QRFH receiver.
- Theoretical Att1 to set on the attenuator (dB): Attenuation to set on the variable attenuator to achieve the closest value of AT1 calculated in order to inject Tn1. The variable attenuator has a minimum resolution of 0.5dB.

The last 4 columns are identical to the previous ones but for the Tn2=0.5K.

It is recommended to do the calibration of the noise circuit in a place clean of RFI. The idea is to perform a NT measurement with the sky and use this measurement as a reference then do a noise temperature measurement with the noise diode to find the variable attenuator setting in order to match the reference NT meas.

The operating of the noise calibration has been tested. The Y-factor of the receiver has been measured when the noise diode is off and when the noise calibration circuit injects Tn=10K. The measurement has been performed at 9GHz on both port. The receiver noise temperature has been calculated using the Noise Adding Radiometer formula:

$$NT(K) = \frac{Tn}{(Y-1)}$$

	Output Power ND Off (dBm)	Output Power ND On (Tn=10K) (dBm)	Y-factor (dB)	Y-factor (ratio)	NT (K) ND method
Port X @9GHz	-52.64	-51.39	1.25	1.333521432	30.0
Port Y @9GHz	-54.5	-53.02	1.48	1.406047524	24.6

 Table 3-3: Noise diode NT measurement results

The receiver noise temperatures in the table above are not corrected (Tsky...) and are in the order of magnitude of the measurements performed with the hot/cold method using the sky as a cold load (see Figure 3-17).

The noise calibration circuit is operational.

Figure 3-21: Y-factor measured with the noise diode On (Tn=10K) and off @9GHz port Y

	Denort	Reference: REP/1704/4	084
Callisto	Keport	Status : Issue :1.0	
		Date · 18/03/2017	

3.2.3 Phase Calibration

The purpose of the phase calibration circuit is to generate a comb spectrum signal up to 14GHz with spectral lines at 10MHz spacing, which are derived from an input reference frequency signal available in the station. The phase calibration circuit configuration is shown below:

Figure 3-22: Noise calibration circuit

In order to validate the phase calibration signal injection, the output of the receiver has been measured with the comb generator on (+10dBm input power) and with the variable attenuator set to the minimum attenuation. The measurement has been performed at 2GHz and 14GHz with various settings of the variable attenuator:

Figure 3-23: Port X output @2GHz when comb generator on and attenuator set to 0dB

Reference: REP/1704/4084

Status : Issue :1.0

Date : 18/03/2017

Figure 3-24: Port X output @2GHz when comb generator on and attenuator set to 31.5dB.

Figure 3-25: Port X output @14GHz when comb generator on and attenuator set to 0dB.

Reference: REP/1704/4084

Status : Issue :1.0

Date : 18/03/2017

Figure 3-26: Port X output @14GHz when comb generator on and attenuator set to 8dB.

Figure 3-27: Port Y output @2GHz when comb generator on and attenuator set to 0dB

Callisto

Report

Reference: REP/1704/4084

Status : Issue :1.0

Date : 18/03/2017

Figure 3-28: Port Y output @2GHz when comb generator on and attenuator set to 31.5dB.

Figure 3-29: Port Y output @14GHz when comb generator on and attenuator set to 0dB.

Reference: REP/1704/4084

Status : Issue :1.0

Date : 18/03/2017

Spectrum	, T								
Ref Level	-10.00 dB	m	🖷 R	BW 5 kHz					· · · · ·
🖷 Att	20 c	ib swi	2.6 s 👄 V	BW 5 Hz	Mode /	\uto FFT			
SGL									
●1AP Clrw									
-20 dBm						M1[1]	1	:	-79.58 dBm 13.900000 GHz
-40 dBm									
-60 dBm—-9		 4 - ⊊	- - - - - -	- 8 - 9	- 1 1	<u>ı 12 13</u>	-14 1;	- 16 17	-18-19-
1 ~80 dBm ~ ~~									
-100 dBm—									
CF 14.0 GH	łz			6	91 pts			Sp	an 200.0 MHz
Marker Pea	k List								
No	Stimulu	IS	Resp	onse	No	Stimulu	IS	Respo	onse 🔄 📘
1	13,909	990 GHz	-6	52.966 dBm	11	14.010	130 GHz	-6-	4.427 dBm
2	13.920	120 GHz	-6	53.504 dBm	12	14.019	970 GHz	-6	4.072 dBm
3	13,929	960 GHZ	-6	3.802 dBm	13	14.030	100 GHZ	-6-	4.110 dBm
4	13,940	090 GHZ	-t	3.573 aBm	14	14.039	940 GHZ	-0-	4.496 dBm
6	13,949	930 GHZ 060 CUR	-0	3.529 UBM	15	14.050	070 GHZ	-0.	5.112 UBM
7	13 960	900 GHZ		53.899 dBm	17	14 070	910 GHZ 040 GHZ	-0.	5 445 dBm
8	13,980	030 GHz	 f	64.524 dBm	18	14.079	880 GHz	-6	4.896 dBm
9	13.989	870 GHz	-6	64.969 dBm	19	14.090	010 GHz	-6	4.474 dBm
10	14.000	000 GHz	-f	64.991 dBm	20	14.099	860 GHz	-6	5.183 dBm 📘
)[]					Ready			09.03.2017 15:32:51

Figure 3-30: Port Y output @14GHz when comb generator on and attenuator set to 8dB.

The maximum picket level at 14GHz available at the output of the receiver is around -53.8dBm for the X port and -52.8dBm for the Y port.

The phase calibration circuit is operational.

Date: 9.MAR.2017 15:32:51

Cal	listo
27	

LIST OF ABBREVIATIONS

Acronym	Meaning
σ	Standard Deviation
AD	Applicable Document
AIL	Action Item List
AM	Amplitude Modulation
AZ	Azimuth
BER	Bit Error Rate
Bps	Bits per second
CCSDS	Consultative Committee for Space Data System
CDR	Critical Design Review
DC	Direct Current
ESA	European Space Agency
ESOC	European Space Operations Centre
ICD	Interface Control Document
IF	Intermediate Frequency
k	Boltzman's Constant
Κ	Kelvin
Kbps	Kilo bps
Kcps	Kilo cps
LAN	Local Area Network
LNA	Low Noise Amplifier
MTBF	Mean Time Between Failure
NASA	National Aeronautics and Space Administration
NF	Noise Figure
PC	Personal Computer
QoS	Quality of Service
RF	Radio Frequency
SoW	Statement of Work
TBC	To Be Confirmed
TBD	To Be Defined
WO	Work Order
WP	Work Package