

Reference: REP/1704/4042

Status : Issue : 1.1

Date : 14/02/2017

Wideband Compact Cryogenic receiver QRFH SN03 FAT

REPORT

Document Reference : REP/1704/4042

Status : Issue : 1.1

Date : 14/02/2017

Contract : PRP/685/3606v1.0 11.Apr.2016

+ Letter UTAS 13.Apr.2016

Prepared by : Thomas BONHOURE

Reviewed/Approved by : Steve Rawson

Approval Signature :

Callisto
12 Av.de Borde Blanche
Villefranche de Lauragais F-31290
Tel. +33 561 800 807
www.callisto-space.com

Copyright ©2017 Callisto France

The Copyright of this document is the property of Callisto France s.a.r.l. It is supplied in confidence and shall not be reproduced, copied or communicated to any third party without written permission from Callisto. All rights reserved.

Reference: REP/1704/4042

Status : Issue : 1.1

Date : 14/02/2017

Document Amendment Record

Issue No.	Date	File Name	Details
0.1	26.01.17	4042	Draft
1.0	14.02.17	4042	First issue after internal review
1.1	24.02.17	4042	The initial NT measurement was not relevant due to bad weather condition. Addition of NT measurement done the 23-02-17

Document Distribution Record

Name	Organisation	Media	Number of Copies
Callisto Team	Callisto	PDF	1
Simon Ellingsen	UTAS	PDF	1

Reference: REP/1704/4042

: 14/02/2017

Status : Issue : 1.1

Date

TABLE OF CONTENTS

Document Amendment Record	2
Document Distribution Record	2
TABLE OF CONTENTS	3
LIST OF FIGURES	4
LIST OF TABLES	4
1. INTRODUCTION	5
1.1 PURPOSE & SUMMARY 1.2 APPLICABLE & REFERENCE DOCUMENTS	5
2. TEST RESULTS SUMMARY	6
3. DETAILED TESTS RESULTS	9
3.1 THERMAL TESTS	
3.2.1 Noise temperature measurement	
3.2.2 Noise Calibration	
LIST OF ARRREVIATIONS	3.4

Reference: REP/1704/4042

Status : Issue : 1.1

Date : 14/02/2017

LIST OF FIGURES

Figure 3-1: Cooldown 11	
FIGURE 3-2: STABILIZATION – BASE TEMPERATURE	
FIGURE 3-3: GAIN VIA TEST INPUT FOR TLNA=76K	
FIGURE 3-4: OUTPUT RETURN LOSS	
FIGURE 3-5: GAIN VIA TEST INPUT STABILITY OVER 60MIN (1 SAMPLE PER MIN) @2GHz	
FIGURE 3-6: GAIN VIA TEST INPUT STABILITY OVER 60MIN (1 SAMPLE PER MIN) @8GHz	
FIGURE 3-7: GAIN VIA TEST INTUT STABILITY OVER 60MIN (1 SAMPLE PER MIN) @ 14GHz	
FIGURE 3-8: GAIN VIA TEST INTUT STABILITY OVER 60SEC (1 SAMPLE PER SEC) @2GHz	
FIGURE 3-9: GAIN VIA TEST INTUT STABILITY OVER 60SEC (1 SAMPLE PER SEC) @8GHz	
FIGURE 3-10: GAIN VIA TEST IN OT STABILITY OVER 60SEC (1 SAMPLE PER SEC) @14GHz	
FIGURE 3-11: GAIN EXTRACTED FROM NT MEASUREMENT	
FIGURE 3-12: RFI SURVEY IN THE CALLISTO LABORATORY, OUTPUT OF AN AMPLIFIER, AT LOW FREQUENCE	YTHE
RFI ARE MIXED BY THE AMPLIFIER	,1 111L
FIGURE 3-13: RFI SURVEY OF THE NT MEASUREMENT PLACE.	
FIGURE 3-14: NT MEASUREMENT TEST SET-UP.	
FIGURE 3-15: NT MEASUREMENT RAW DATA FOR TLNA=68K	
FIGURE 3-16: NT MEASUREMENT CLEANED DATA FOR TLNA=68K	
FIGURE 3-17: NT MEASUREMENT CLEANED DATA TREND FOR TLNA=68K	
FIGURE 3-18: NOISE CALIBRATION CIRCUIT	
Figure 3-19: Y-factor measured with the noise diode On (Tn=10K) and off @9GHz port X27	
FIGURE 3-20: Y-FACTOR MEASURED WITH THE NOISE DIODE ON (TN=10K) AND OFF @9GHZ PORT Y27	
FIGURE 3-21: NOISE CALIBRATION CIRCUIT	
FIGURE 3-22: PORT X OUTPUT @2GHZ WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 0DB28	
FIGURE 3-23: PORT X OUTPUT @2GHZ WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 31.5DB.	29
FIGURE 3-24: PORT X OUTPUT @14GHz WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 0DB.29	
FIGURE 3-25: PORT X OUTPUT @14GHZ WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 14DB.	30
FIGURE 3-26: PORT Y OUTPUT @2GHz WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 0DB30	
FIGURE 3-27: PORT Y OUTPUT @2GHZ WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 31.5DB.	31
FIGURE 3-28: PORT Y OUTPUT @14GHZ WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 0DB.32	-
FIGURE 3-29: PORT Y OUTPUT @14GHZ WHEN COMB GENERATOR ON AND ATTENUATOR SET TO 14DB.	33
	30

LIST OF TABLES

Table 2-1: Test Results Summary	8
TABLE 3-1: TEST RESULT SHEET N°1 - THERMAL TESTS	
TABLE 3-2: TEST RESULT SHEET N°2 – RF TESTS	13
Tari e 3-3: Noise diode NT measurement results	26

Reference: REP/1704/4042

Status : Issue : 1.1

Date : 14/02/2017

1. INTRODUCTION

1.1 Purpose & Summary

Tests have been conducted on the Wideband Compact Cryogenic Receiver QRFH SN03 in Callisto laboratory and outside for the noise temperature according to the procedures described in test plan 1.2.1.

The tests included RF testing and cryogenic testing.

The tests have been performed from 23.Jan.2017 to 09.Feb.2017. Thermal and RF tests have been performed both indoor and outdoor. The FAT results are successful, within the specification.

The receiver operation and performance are validated.

1.2 Applicable & Reference Documents

This section lists other documents which are referred to in the main body of this document. In cases when the document cited is listed without an issue number, revision number or date, then the reader should refer to the latest available issue.

1.2.1 Applicable Documents

AD1	Callisto Proposal, Ref. PRP/685/3606 issue 1.0 dated 11th April 2016
AD2	User Manual, QRFH Compact Wideband Cryogenic Receiver, DOC/1704/3991
AD3	Test Plan Procedure QRFH Compact Receiver, TST/1704/3990, Issue 1.0
AD4	Interface Control Document, ICD/1704/3992, issue 1.0

Reference: REP/1704/4042

Status : Issue : 1.1

Date : 14/02/2017

2. TEST RESULTS SUMMARY

Result "R" column = Passed (P), Marginal (M), Failed (F)

Parameter	Specifications	Results	Verification Method	R	Comments	
Frequency Band	$2-14\mathrm{GHz}$		AT			
Port X		2-14GHz		P		
Port Y		2-14GHz		P		
Noise Temperature	<40K		AT		at cryogenic temperature	
Port X		95% of the meas <40K		P	TLNA=80K	
Port Y		100% of the meas <40K		P	TLNA=80K	
Gain	>55dB		AT			
Port X		56dBmin		P	Gain extracted from NT meas	
Port Y		56dBmin		P	Gain extracted from N1 meas	
Gain Flatness	10dBpp		AT			
Port X		~7dBpp		P	Worst case, gain extracted from NT meas.	
Port Y		~7dBpp		P	Approximated value due to RFI perturbation	
Output Return Loss	10dBmin		AT			
Port X		10.7dBmin		P	14dB typical	
Port Y		11.4dBmin		P	14dB typical	
Pout 1dB	+20dBm		CT; D			

Reference: REP/1704/4042

Status : Issue : 1.1

		1			1
Port X		+20dBm		P	
Port Y		+20dBm		P	
Gain via test input			AT		No specification defined for this parameter
Port X		20.1dB <g<44.5db< td=""><td></td><td></td><td></td></g<44.5db<>			
Port Y		19.4dB <g<44.3 db<="" td=""><td></td><td></td><td></td></g<44.3>			
Cooldown Time to reach NT<40K	<5 hours		AT		
Port X		4Hrs		P	
Port Y		4Hrs		P	
Noise calibration	None		AT	Р	The NT measurement performed with the noise diode is comparable with the NT measurement done with the sky method (see Table 3-3)
Phase calibration	None		AT	P	The minimum picket level at 14GHz available at the output of the receiver is around -51dBm (see Figure 3-25 and Figure 3-28).
Cold Head Base Temperature	80K	75K	AT	P	
Cooldown Time to base temperature	not specified	1h20	AT		
Warm-up Time (base temp>280K)	not specified	15Hrs	AT		
RF Input	Free space radiation	Ok	D	P	
RF output connector	SMA	Ok	I	P	
Port X		Ok		P	
Port Y		Ok		P	

Reference: REP/1704/4042

Status : Issue : 1.1

10MHz Phase Calibration Input	SMA	Ok	I	P	
Dimensions (mm)	l=612mm * Phi=311mm		I	P	Excluding supports and connectors
Weight (kg)	<27kg	26.8Kg	AT	P	Excluding supports and cables
Operating Orientation	Any		D	P	
Operating Temperature	-10°C to +40°C		D	P	
Storage Temperature	-40°C to +60°C		D	P	
Relative Humidity	to 90% non condensing		D	P	
Ventilation Requirement	Forced air cooling	Ok	Ι	P	
Max Power Consumption	400W	345W	AT	P	
Input Voltage	90—264VAC / 47—63Hz	Ok	D	P	
Distance between receiver and PSU Drawer	<20m	Ok	AT	P	Split M&C – 5m between receiver and DAQ-PSU enclosure – 20m between DAQ-PSU enclosure and PC enclosure
LMS parameters display		Ok	AT	P	
LMS functions		Ok	AT	P	
LMS log files		Ok	AT	P	
Remote communication		Ok	AT	P	
Cryocooler MTTF	200,000 hours		D	P	

Table 2-1: Test Results Summary

Reference: REP/1704/4042

Status : Issue : 1.1

Date : 14/02/2017

3. DETAILED TESTS RESULTS

3.1 Thermal Tests

Result "R" column = Passed (P), Marginal (M), Failed (F)

Ref	Parameter / Requirement	Spec	Result	R	Comments
	Date: 09/02/17				
	Cooldown time				
	to RF specification	5 hours	see Table 2-1		5 hours expected to reach RF specification (NT<40K)
	on cold head	295K to <100K	0h23	1	
	<i>((?)</i>	295K to Base temperature	1h20	1	
	on LNA	295K to <100K	0h39	-	
	<i>ω</i> ?	295K to Base temperature	7hrs	-	
	on feed base plate	295K to <150K	4h46	-	
	<i>((?)</i>	295K to Base temperature	15hrs	_	
	Base Temperatures	Tset = 75K			
	Cold head	~75K±0.5K	75K	P	@7hours in cooldown
	LNA	<85K	80K	P	@7hours in cooldown
	Feed [base]	<130K	130K	P	@7hours in cooldown
	Feed [top]	<150K	142K	P	@7hours in cooldown
	Cooler Input Power		60W		
	Compressor Temperature	<70°C	8°C	P	Receiver in outdoor condition, winter time

Reference: REP/1704/4042

Status : Issue : 1.1

Ref	Parameter / Requirement	Spec	Result	R	Comments
	Ambient(Room) Temperature		3°C		Receiver in outdoor condition, winter time.
	Warmup time (no heaters)	100K to 295K No spec.	NA		Warm-up not logged on this unit. See Unit SN01 FAT report Ref. DOC/1704/3986.

Table 3-1: Test Result Sheet n°1 - Thermal Tests

Reference: REP/1704/4042

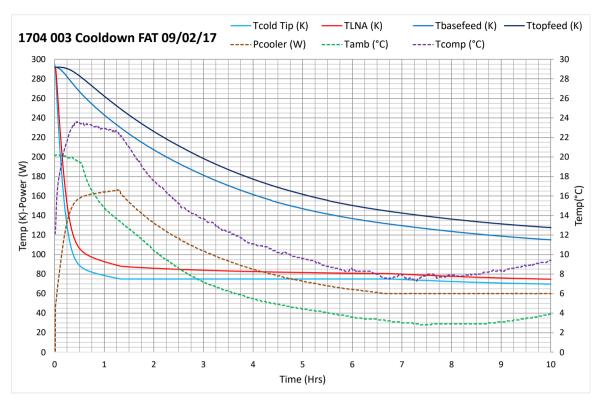


Figure 3-1: Cooldown

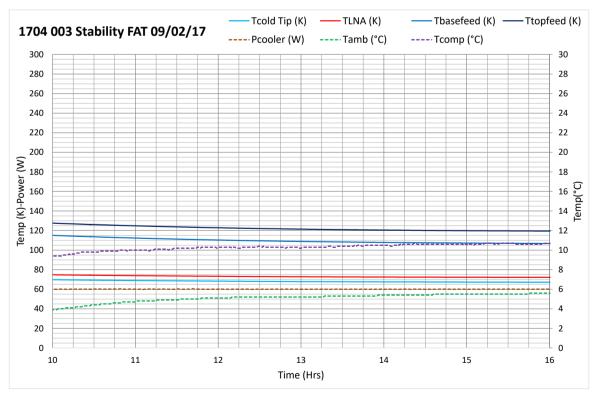


Figure 3-2: Stabilization – Base Temperature

Reference: REP/1704/4042

Status : Issue : 1.1

Date : 14/02/2017

3.2 RF Tests

Result "R" column = Passed (P), Marginal (M), Failed (F)

Ref	Parameter / Requirement	Spec		Result		R	Comments
	Cryogenic Temperature						TcryoLNA = 72K
	Frequency Band	2 – 14 GHz		2-14GHz			
				Port X	Port Y		Due to winter condition, the physical temperatures of the
			Min Meas	17.3K	15.7K		system were a bit lower than set (75K) (Tcoldtip=74K; TLNA=80K; Tbase feed=121K and Ttopfeed=136K).
			Max Meas	47.7K	37.6K		NT measurement is degraded by the RFI observed at low
	Noise Temperature	Max<40K	Mean Meas	25.8K	22.6K	-	frequency. (See NT graph Figure 3-15) Port X: 95% of the NT measurement is in specification from 3GHz up to 14GHz. Port Y: 100% of the NT measurement is in specification from 3GHz up to 14GHz.
			Min Trend	20K	15K		
			Max trend	46K	36K		
	Gain	>55dB	Port X		Port Y	P	Gain extracted from NT meas
	Gam	>33dD	56dBm	in 5	6dBmin	1	Gain extracted from N1 inteas
	Gain Flatness	10dBpp	~7dBp	р ^	~7dBpp	P	Worst case gain extracted from NT meas
	Output Return Loss	>10dB	10.7dB r	nin 11	.4dB min	P	14dB typical
	Pout 1dB	+20dBm		+20dBm		P	By design
	Gain via test input (Port X)	-	20.1dB <gain<44.5db< th=""><th></th><th></th></gain<44.5db<>				
	Gain via test input (Port Y)	-	19.4d	19.4dB <gain<44.3 db<="" td=""><td></td><td></td></gain<44.3>			

Reference: REP/1704/4042

Status : Issue : 1.1

Ref	Parameter / Requirement	Spec	Result	R	Comments
	Gain via test input stability (Port X)	-	@2GHz / 60min: 0.03dBpp @8GHz / 60min: 0.03dBpp @14GHz / 60min: 0.04dBpp @2GHz / 60sec: 0.03dBpp @8GHz / 60sec: 0.03dBpp @14GHz / 60sec: 0.04dBpp		Two measurement session have been performed, one with the VNA calibrated between 1GHz and 9GHz and the second session with the VNA calibrated from 13.5GHz up to 14.5GHz.
	Gain via test input stability (Port Y)	-	@2GHz / 60min: 0.03dBpp @8GHz / 60min: 0.04dBpp @14GHz / 60min: 0.06dBpp @2GHz / 60sec: 0.02dBpp @8GHz / 60sec: 0.03dBpp @14GHz / 60sec: 0.03dBpp		Two measurement session have been performed, one with the VNA calibrated between 1GHz and 9GHz and the second session with the VNA calibrated from 13.5GHz up to 14.5GHz.

Table 3-2: Test Result Sheet n°2 – RF Tests

Reference: REP/1704/4042

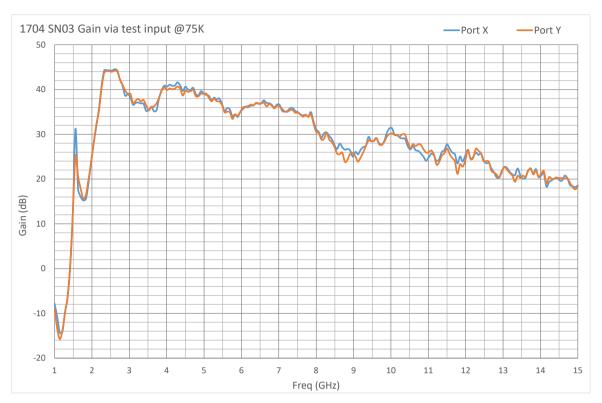


Figure 3-3: Gain via test input for TLNA=76K

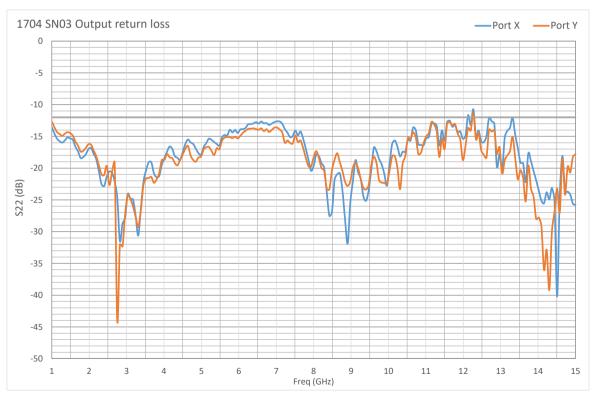


Figure 3-4: Output Return Loss

Reference: REP/1704/4042

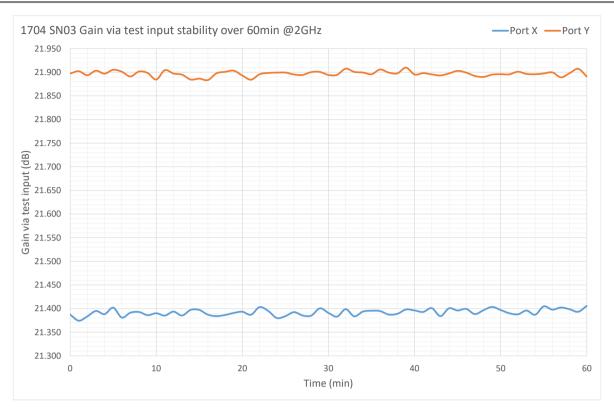


Figure 3-5: Gain via test input stability over 60min (1 sample per min) @2GHz

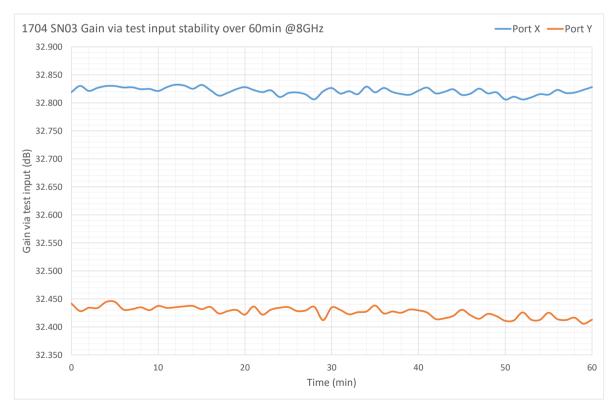


Figure 3-6: Gain via test input stability over 60min (1 sample per min) @8GHz

Reference: REP/1704/4042

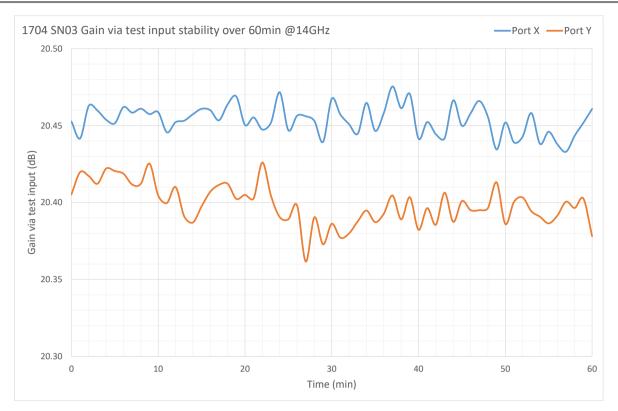


Figure 3-7: Gain via test input stability over 60min (1 sample per min) @14GHz

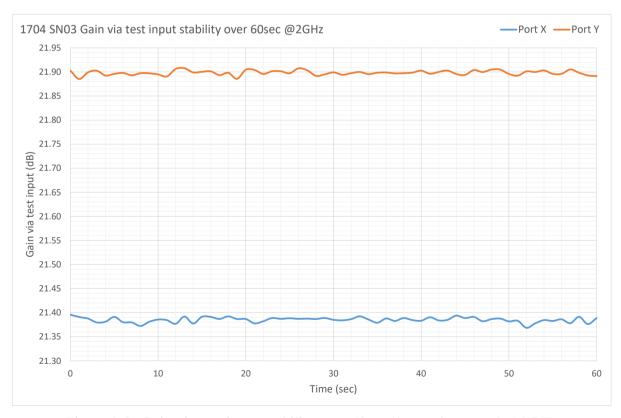


Figure 3-8: Gain via test input stability over 60sec (1 sample per sec) @2GHz

Reference: REP/1704/4042

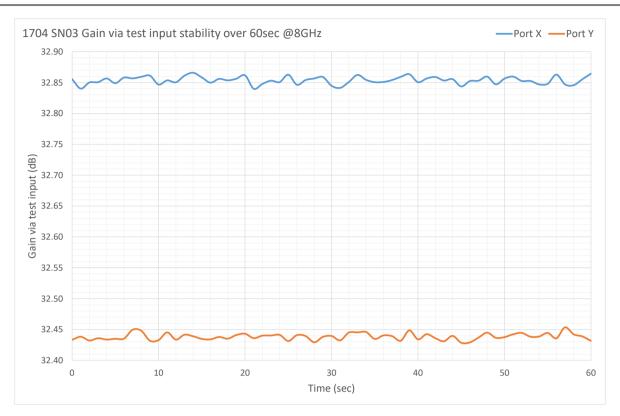


Figure 3-9: Gain via test input stability over 60sec (1 sample per sec) @8GHz

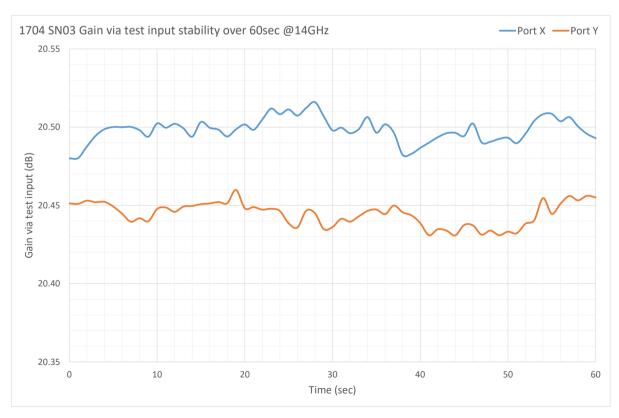


Figure 3-10: Gain via test input stability over 60sec (1 sample per sec) @14GHz

Reference: REP/1704/4042

Status : Issue : 1.1

Date : 14/02/2017

The gain of the receiver has been extracted from the noise temperature measurement using the following formula:

$$G = \frac{P_{hot}}{(T_e - T_{hot}) \times B \times k}$$

With:

- G = Gain of the receiver
- Phot = Power measure at the output of the receiver when the hot load is in front of the receiver
- Te = Noise temperature of the receiver
- Thot = Noise temperature of the hot load
- B = Bandwidth (Resolution Band Width set on the spectrum analyser)
- K = Boltzmann constant

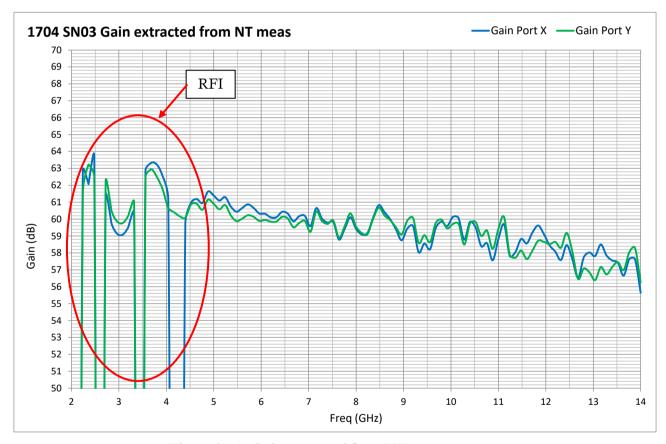
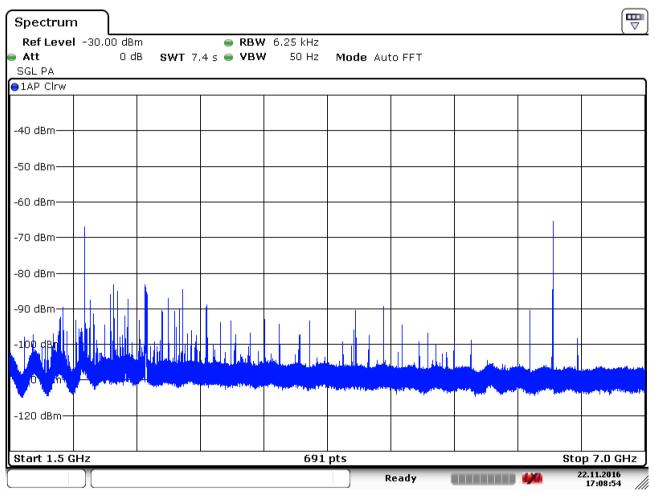


Figure 3-11: Gain extracted from NT measurement.

The gain extracted from the NT measurement is noisy but it gives a good trend for the overall gain of the receiver.


Reference: REP/1704/4042

Status : Issue : 1.1

Date : 14/02/2017

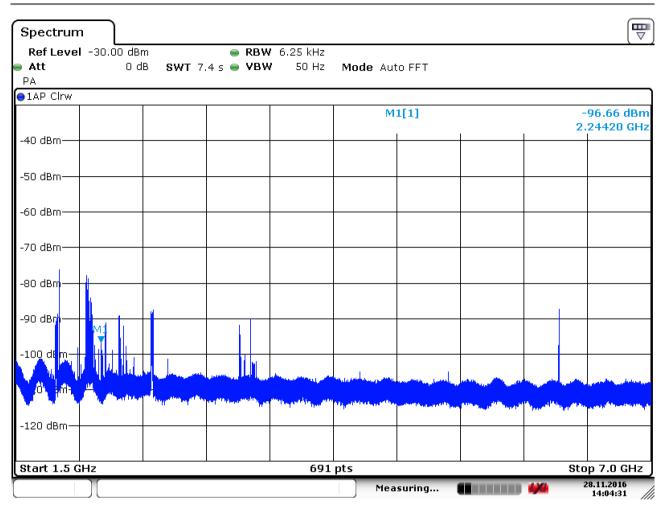
3.2.1 Noise temperature measurement

Due to the increase of mobile phone antenna installations nearby Callisto's premises it is becoming more and more difficult to make clean and valuable noise temperature measurements on the QRFH receiver. Indeed, the increase of RFI measured in the Callisto laboratory is problematic for this type of measurement:

Date: 22.NOV.2016 17:08:54

Figure 3-12: RFI survey in the Callisto laboratory, output of an amplifier, at low frequency the RFI are mixed by the amplifier.

The RFI have a direct impact on the NT measurement (noise peak) but the RFI are also mixed by the amplifiers of the receiver and so the overall noise floor increases.


It is difficult for us to find a convenient place without RFI to make the NT measurement but we have tried to move to a place with less RFI in the countryside:

Reference: REP/1704/4042

Status : Issue : 1.1

Date : 14/02/2017

Date: 28.NOV.2016 14:04:31

Figure 3-13: RFI survey of the NT measurement location.

Reference: REP/1704/4042

Status : Issue : 1.1

Figure 3-14: NT measurement test set-up.

Reference: REP/1704/4042

Status : Issue : 1.1

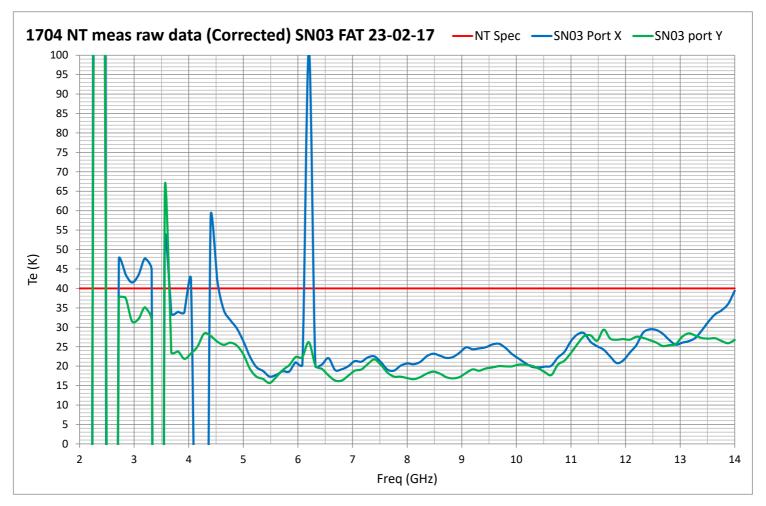


Figure 3-15: NT Measurement raw data for TLNA=80K

Reference: REP/1704/4042

Status : Issue : 1.1

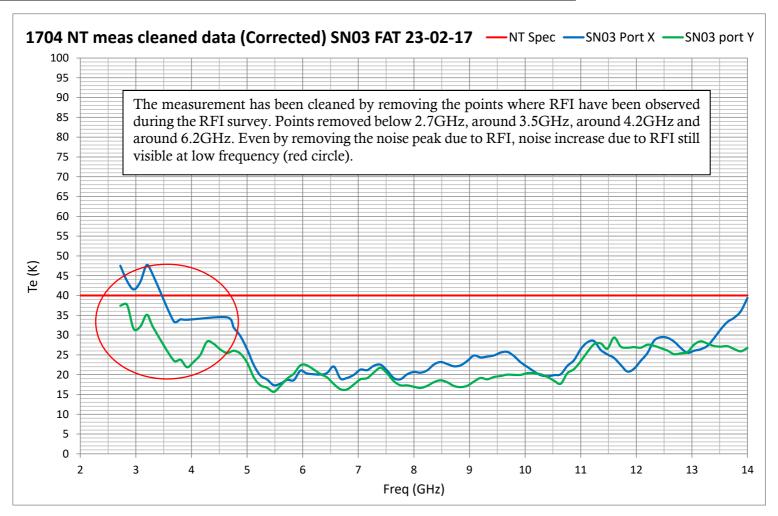


Figure 3-16: NT Measurement cleaned data for TLNA=80K

Reference: REP/1704/4042

Status : Issue : 1.1

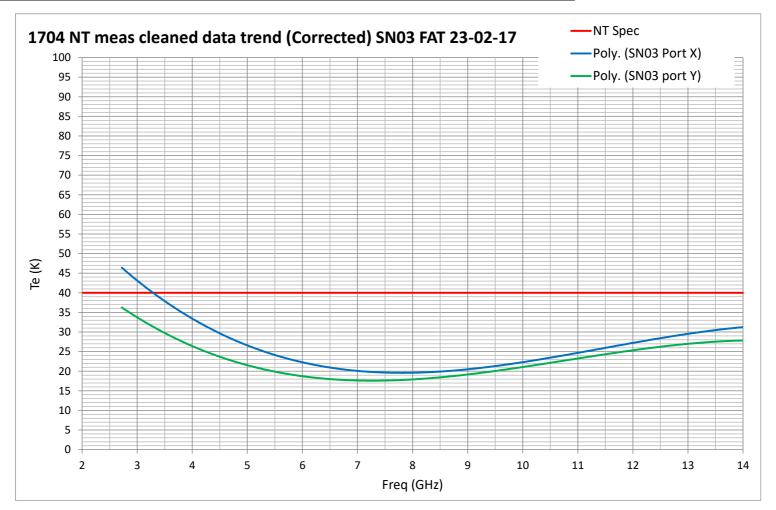


Figure 3-17: NT Measurement cleaned data trend for TLNA=80K

Reference: REP/1704/4042

Status : Issue : 1.1

Date : 14/02/2017

3.2.2 Noise Calibration

The purpose of this circuit is to inject two levels of noise in the QRFH receiver in order to do a noise measurement using the Y-factor method. The noise is generated by a noise diode and the level of noise is set using a variable attenuator. This noise signal is injected inside the QRFH feed by a probe antenna.

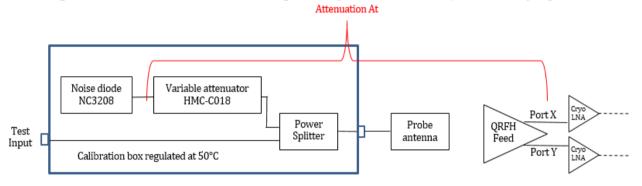


Figure 3-18: Noise calibration circuit

The two levels of noise have been defined by UTAS Tn1=10K and Tn2=0.5K. The theoretical attenuation (At) required to achieve Tn1 and Tn2 has been calculated according to the ENR of the noise diode at 50°C from the calibration data given by the noise diode manufacturer. The following tables give the theoretical variable attenuator settings to generate Tn1 and Tn2:

1704 QRFH SN03 Attenuator Settings for Noise Calibration Port X (ND AE850)						
Freq (GHz)	ND ENR (dB) @50°C	Td ND @50°C (K)	At1 calculated for Tn1=10K (dB)	Theoretical Att1 to set on the attenuator (dB)	At2 calculated for Tn2=0.5K (dB)	Theoretical Att2 to set on the attenuator (dB)
2	31.93	452560.23	46.56	10.0	59.57	23
3	31.74	433200.38	46.37	21.0	59.38	31.5
4	31.68	427260.63	46.31	14.0	59.32	27.5
5	31.62	421402.37	46.25	18.0	59.26	31
6	31.51	410870.20	46.14	14.5	59.15	27.5
7	31.32	393294.93	45.95	15.5	58.96	27.5
8	31.12	375606.79	45.75	13.0	58.76	25.5
9	31.15	378208.37	45.78	8.0	58.79	20.5
10	31.25	387011.22	45.88	7.5	58.89	20
11	31.25	387011.22	45.88	6.0	58.89	19
12	31.43	403376.26	46.06	4.0	59.07	17.5
13	31.65	424321.38	46.28	1.5	59.29	14.5
14	31.64	423346.14	46.27	0.0	59.28	12.5

1704 QRFH SN03 Attenuator Settings for Noise Calibration Port Y (ND AE850)						
Freq (GHz)	ND ENR (dB) @50°C	Td ND @50°C (K)	At1 calculated for Tn1=10K (dB)	Theoretical Att1 to set on the attenuator (dB)	At2 calculated for Tn2=0.5K (dB)	Theoretical Att2 to set on the attenuator (dB)
2	31.93	452560.23	46.56	10.0	59.57	23
3	31.74	433200.38	46.37	21.0	59.38	31.5
4	31.68	427260.63	46.31	14.0	59.32	27.5
5	31.62	421402.37	46.25	18.0	59.26	31
6	31.51	410870.20	46.14	14.5	59.15	27.5
7	31.32	393294.93	45.95	15.5	58.96	27.5
8	31.12	375606.79	45.75	13.0	58.76	25.5
9	31.15	378208.37	45.78	8.0	58.79	20.5
10	31.25	387011.22	45.88	7.5	58.89	20
11	31.25	387011.22	45.88	6.0	58.89	19
12	31.43	403376.26	46.06	4.0	59.07	17.5
13	31.65	424321.38	46.28	1.5	59.29	14.5
14	31.64	423346.14	46.27	0.0	59.28	12.5

Reference: REP/1704/4042

Status : Issue : 1.1

Date : 14/02/2017

Find below a description of each column of the table above:

- ND ENR @50°C (dB): ENR of the noise diode @50°C from the calibration data given by the noise diode manufacturer.
- Td ND @50°C (K): Noise generated by the noise diode in Kelvin. Derivate from the noise diode ENR @50°C.
- At1 calculated for Tn1=10K (dB): Attenuation At1 calculated in order to inject Tn1=10K in the QRFH receiver.
- Theoretical Att1 to set on the attenuator (dB): Attenuation to set on the variable attenuator to achieve the closest value of AT1 calculated in order to inject Tn1. The variable attenuator has a minimum resolution of 0.5dB.

The last 4 columns are identical to the previous ones but for the Tn2=0.5K.

It is recommended to do the calibration of the noise circuit in a place clean of RFI. The idea is to perform a NT measurement with the sky and use this measurement as a reference then do a noise temperature measurement with the noise diode to find the variable attenuator setting in order to match the reference NT meas.

The operating of the noise calibration has been tested. The Y-factor of the receiver has been measured when the noise diode is off and when the noise calibration circuit injects Tn=10K. The measurement has been performed at 9GHz on both port. The receiver noise temperature has been calculated using the Noise Adding Radiometer formula:

$$NT(K) = \frac{Tn}{(Y-1)}$$

	•	Output Power ND On (Tn=10K) (dBm)	Y-factor (dB)	Y-factor (ratio)	NT (K) ND method
Port X @9GHz	-54.91	-53.64	1.27	1.339676687	29.4
Port Y @9GHz	-54.5	-53	1.5	1.412537545	24.2

Table 3-3: Noise diode NT measurement results

The receiver noise temperatures in the table above are not corrected (Tsky...) and are in the order of magnitude of the measurements performed with the hot/cold method using the sky as a cold load (see Figure 3-16).

The noise calibration circuit is operational.

Reference: REP/1704/4042

Status : Issue : 1.1

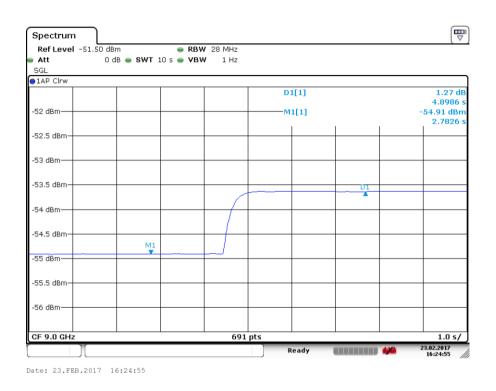


Figure 3-19: Y-factor measured with the noise diode On (Tn=10K) and off @9GHz port X

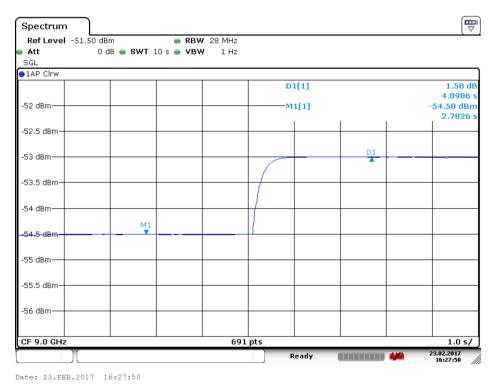


Figure 3-20: Y-factor measured with the noise diode On (Tn=10K) and off @9GHz port Y

Reference: REP/1704/4042

: 14/02/2017

Status : Issue : 1.1

Date

3.2.3 Phase Calibration

The purpose of the phase calibration circuit is to generate a comb spectrum signal up to 14GHz with spectral lines at 10MHz spacing, which are derived from an input reference frequency signal available in the station. The phase calibration circuit configuration is shown below:

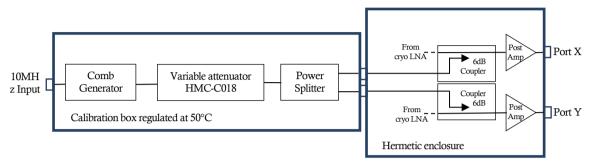


Figure 3-21: Noise calibration circuit

In order to validate the phase calibration signal injection, the output of the receiver has been measured with the comb generator on (+10dBm input power) and with the variable attenuator set to the minimum attenuation. The measurement has been performed at 2GHz and 14GHz with various settings of the variable attenuator:

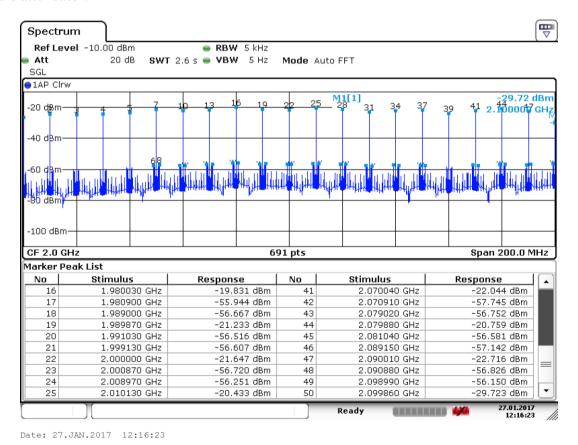


Figure 3-22: Port X output @2GHz when comb generator on and attenuator set to 0dB

Reference: REP/1704/4042

Status : Issue : 1.1

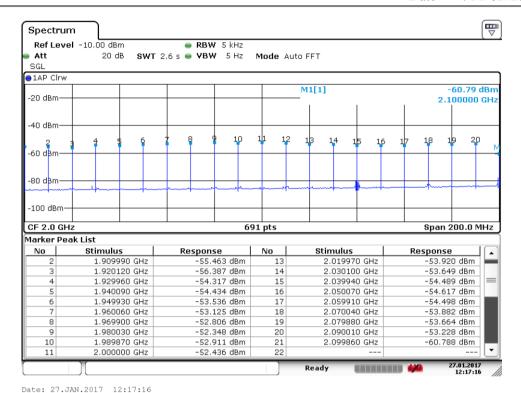


Figure 3-23: Port X output @2GHz when comb generator on and attenuator set to 31.5dB.

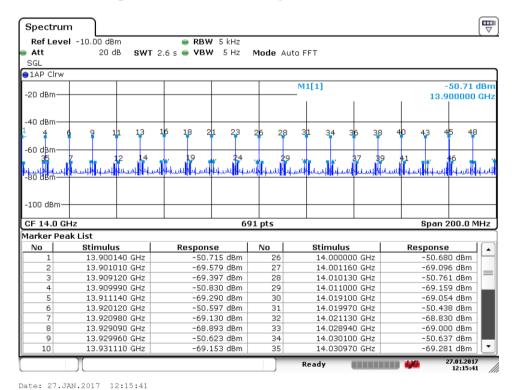


Figure 3-24: Port X output @14GHz when comb generator on and attenuator set to 0dB.

Reference: REP/1704/4042

Status : Issue : 1.1

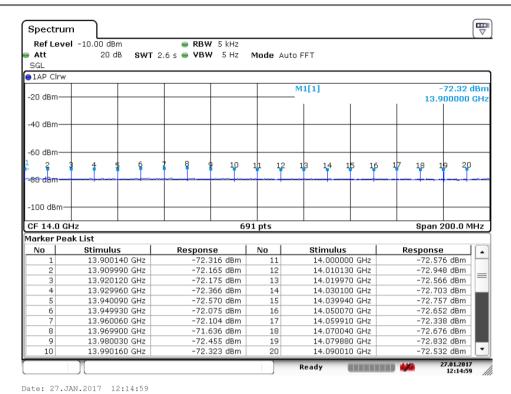


Figure 3-25: Port X output @14GHz when comb generator on and attenuator set to 14dB.

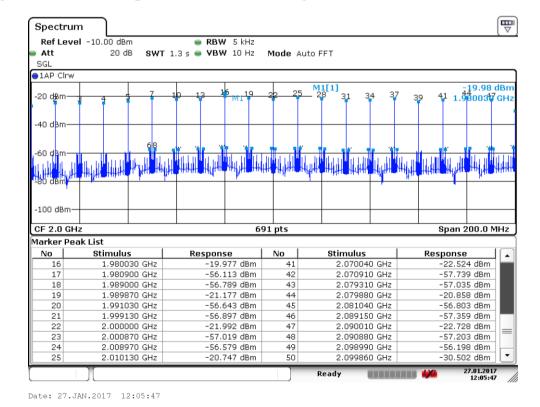


Figure 3-26: Port Y output @2GHz when comb generator on and attenuator set to 0dB

Reference: REP/1704/4042

Status : Issue : 1.1

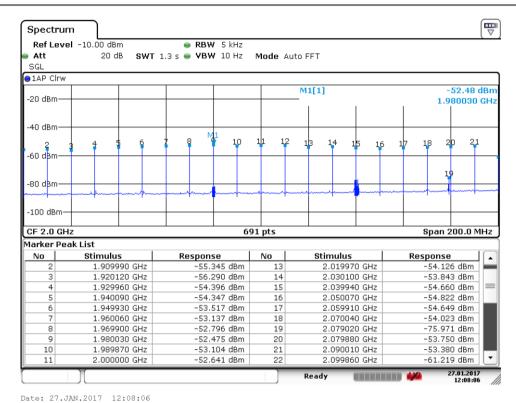


Figure 3-27: Port Y output @2GHz when comb generator on and attenuator set to 31.5dB.

Reference: REP/1704/4042

Status : Issue : 1.1

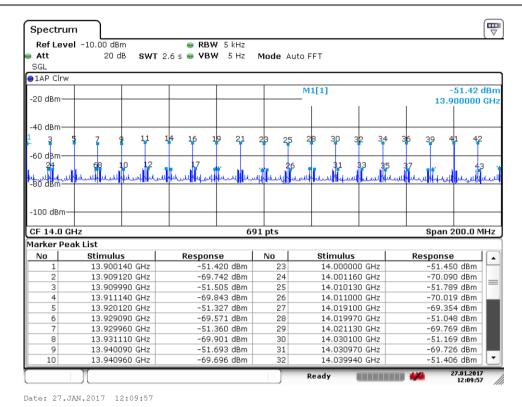
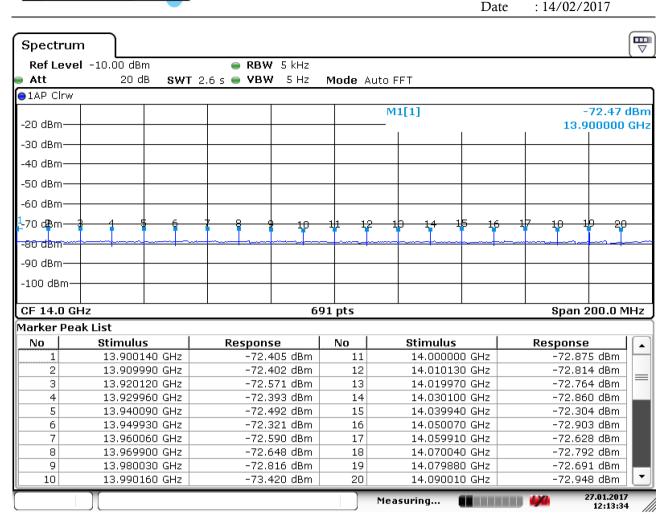



Figure 3-28: Port Y output @14GHz when comb generator on and attenuator set to 0dB.

Reference: REP/1704/4042

Status : Issue : 1.1

Date: 27.JAN.2017 12:13:34

Figure 3-29: Port Y output @14GHz when comb generator on and attenuator set to 14dB.

The maximum picket level at 14GHz available at the output of the receiver is around -50.7dBm for the X port and -51.5dBm for the Y port.

The phase calibration circuit is operational.

Reference: REP/1704/4042

: 14/02/2017

Status : Issue : 1.1

Date

LIST OF ABBREVIATIONS

Acronym	Meaning

Standard Deviation
 AD Applicable Document
 AIL Action Item List
 AM Amplitude Modulation

AZ Azimuth
BER Bit Error Rate
Bps Bits per second

CCSDS Consultative Committee for Space Data System

CDR Critical Design Review

DC Direct Current

ESA European Space Agency

ESOC European Space Operations Centre
ICD Interface Control Document
IF Intermediate Frequency

k Boltzman's Constant

K Kelvin
Kbps Kilo bps
Kcps Kilo cps

LAN Local Area Network
LNA Low Noise Amplifier

MTBF Mean Time Between Failure

NASA National Aeronautics and Space Administration

NF **Noise Figure Personal Computer PC Quality of Service QoS Radio Frequency** RF Statement of Work SoW To Be Confirmed **TBC** To Be Defined **TBD** Work Order WO Work Package WP